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Given a set of functions {p.(z)}, necessary and sufficient conditions are known under which the
basic series % I1, £(0) p(z) will represent all functions f(z) in certain classes. The various cases
are includeg_i(r)l a general theory given in part II. Questions of uniqueness are discussed, and an
attempt is made to initiate a theory of representation by series of the formkgootk pi(z) which are

not necessarily basic. Topological methods are used, and part I is devoted largely to preliminaries.
In part IIT is discussed the relationship between given sets and various associated sets such as the
inverse and product sets.

InTRODUCTION

A considerable theory (Whittaker 1949) has been developed of the formal series

3 LA () )
associated with a set of given functions (frequently polynomials)

pO(Z), ﬁl(z)a [72(2), teey

and for certain classes E a necessary and sufficient condition has been found that all func-
tions in F should be represented by their basic series (1). The first such problem to be solved
was that in which £ was the class of all functions regular in | z | <R, the {p,(z)} were poly-
nomials satisfying a certain condition (Cannon’s condition) on their degree, and represent
meant converge uniformly in | z|<R. Various other cases have been treated, of which an
account will be found in Whittaker’s book. Analogies between the various cases thus
treated suggests the possibility of including them all in one general theory; this has been
done, and is given in part IT.

The present theory not only includes the previous results as special cases, but applies
also to cases not previously considered. Necessary and sufficient conditions of a different
kind from those of Whittaker are also obtained. The generalization sometimes improves
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430 W. F. NEWNS ON THE REPRESENTATION OF

even on existing theory; for example, the theory of Cannon series is shown to generalize
to the theory of absolute effectiveness for general basic series. The theory could also be
applied to other situations than those considered in this paper; for example, applied to
sequential spaces, it would yield results on systems of linear algebraic equations in an
infinity of unknowns.

In each of the cases we wish to cover, Eis a vector space over the field of complex numbers,
and the mode of representation required gives a concept of convergence in £ (Alexandroff
& Hopf 1935, p. 27). We are led to seek a topology .7 on E giving rise to this convergence.
In many cases this concept is expressible in terms of a family of semi-norms on E, the
corresponding topology being the upper bound (in the lattice of all topologies on E) of
the family of topologies induced by the semi-norms (Bourbaki 1940, chap. 1; 1948, chap. 1x) ;
this topology is locally convex (von Neumann 1935). In our case the topology can be defined
by an enumerable set of semi-norms, so that E satisfies the first axiom of countability (Haus-
dorff' 1927, p. 229) and can therefore be metrized with an % -metric (Birkhoff 1936;
Wehausen 1938). Although we apply our results here only to vector spaces over the complex
field, there is no further difficulty in assuming a general field with a non-trivial valuation.

In the other cases we wish to cover, the concept of convergence is in a quite significant
sense complementary to the preceding one. We again have a family of semi-norms (they
are actually norms) defined on subspaces of a vector space F, and the corresponding topo-
logy is a lower bound to the family of topologies induced by the norms. Both kinds of con-
vergence are included in what we call an %, -space, but we do not embark here on a detailed
investigation of such a space, contenting ourselves with such properties as are needed for
the study of series representation.

In addition to the problem of finding conditions under which each fe £ will be represented
by the series (1), there arises the question as to whether the representations are unique.
On Whittaker’s definition of a ‘base of polynomials’, this question is answered in the
affirmative for open circles and at the origin (1949, T,, and T,,). The corresponding ques-
tion for closed circles was not discussed, but it will be shown here that the answer is in the
negative. When the {p,(z)} are not polynomials, the definition of ‘base’ adopted by Nassif
(Whittaker 1949, p. 77) does not appear to be adapted to a generalization of these results;
we therefore introduce an alternative definition which does lead to such a generalization.

To say that every fe E is represented by the series (1) is by no means the same thing as
to say that all such functions can be represented by some series of the form

% p(2).- (2)

L8

k

It will be seen, for example, that every function regular at the origin can be represented

by a series of the form
ay+a(z—1) +ay(z2—2)+..., (3)

but that the formal series (1) associated with the functions 1, (z—1), (z22—z), ... does not
represent (1—z)~! anywhere. There is therefore a need for a theory of representation by
series of the form (2), and in an attempt to initiate this, we show that if the representations
(2) are unique, they coincide with the representations (1). This is not a contradiction to
what has been said with regard to the series (3), for the representations are not there unique.
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ANALYTIC FUNCTIONS BY INFINITE SERIES 431

This question arose from a paper of Boas (1948) and was the starting point of this investiga-
tion (see Newns 1951). '

Given a basic set {#,(z)}, we can in many ways associate with it another basic set: for
example, the inverse, product, derived and integrated sets have been discussed by a number
of authors. In part ITI we shall discuss special topics of this nature, adding the transpose,
transposed inverse and generalized Laurent’s series.

PART I. TOPOLOGICAL PRELIMINARIES

1. ON F-SPACES

Let E be an F-space over the field K of complex numbers. The topology Z, of E is the
upper bound of an increasing sequence {7: s = 1,2, ...} of topologies defined by semi-
norms | % |,. The HausdorfI separation of E is expressed by the property

If x=0, then for some s, | x|,==0, (1-1)
and there is no loss of generality in assuming
s<o implies | x|, <|x],. (1-2)
A metric for £ is given in terms of the semi-norms by
We shall denote by Ef¥ the dual of E for the topology 7, i.e. the vector space of linear
functionals defined on E and continuous in the topology 7.
A series § o, %y, will be said to represent x in 7 if it converges in this topology to the point x.
A sequenc]:a—fzn} is called a base for E if every xe I is represented in 7, by exactly one series
ﬁo Z,(x) z,, where Z,(x) € K. The following is a generalization of a result of Banach (1932,

p. 111; cf. also Iyer 1950, th. 7).
TuroreM 1-1. If every x ¢ E is represented uniquely in some F-topology T, coarser than T,

e}
by a series 3, By (x) x, (where {x,} is a given sequence of points in the completion of E for the
k=0

topology 7)), then B, is a continuous linear functional on E. If {x;} C E, the set {E,} is orthonormal
to the {x,}.
Proof. The linearity and orthonormality of the {,} are immediate from the uniqueness.

. . . . LA ©
For each semi-norm | x| defining 7@ consider the quantity max| ¥ 5,(x) x,| ; this is
k=p

V204
finite by the hypothesis of convergence, and we have seen that 5, (x) is linear, so that this

quantity is a semi-norm on E. Let 7 be the corresponding topology and 7@ the upper
bound of the {7®)}; let.7” be the upper bound of the two topologies 7, and 7. The topology
7 is an #-topology on E, finer than 7. If{y,}isa Cauchy sequence for 7] then itis a Cauchy
sequence for 7, and hence converges in 7, to some point ye E. Also {y,} is a Cauchy
53-2
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432 W. F. NEWNS ON THE REPRESENTATION OF

sequence in 7) and hence in 7 for each s. Thus given ¢>0, we can find 7,(e, 5) such that

max LE E(Yn—Ym) %
v k=g

and all £, so that by (1-1), {&,(y,)} is a Cauchy sequence in K, converging to ,, say. Letting

)
<e for n,m=>=ny. In particular, | B.(y,—y,) % |©<e for n,m=n,

14
m->00 above, we obtain max| > (E,(y,) —§&,) xk <e for n>=n,. This shows in particular
wyv k=g
that Z {;’k x,, converges in.7 @ to an element, y’ say, in the completion of £ for the topology

T ), and that y,~y'(77@). But y,—>y(J @), since 7, is finer than 7 @; hence y =y’ and
by the uniqueness E,(y) = §,. The foregoing now glves y,—>y(19), and thls being true for
all s, y,—y in 7 and hence in J7; thus £ is complete under 7. It follows that the two topo-
logies 7 and 7, areidentical. Hencey,—y(Z,) impliesy,—y(7") and this (as we have proved
incidentally) implies E,(y,) = E,(y), thus proving the continuity. In particular, taking
T © =7 we obtain: '

Corollary. If {z,} is a base for E then Z.,€ E and {Z,)} is orthonormal to the {z,}.

A series Zockxk will be said to represent x absolutely in a semi-norm topology 7 if it
k=0

represents ¥ in.7” and Z | o, | | x| converges. Such a series will be said to represent x abso-
k=0

lutely in an #-topology 7 @ if it represents x absolutely in.7 @ for all s. A base will be called

an absolute base if its representations are absolute. Correspondingly, we have:

TaEOREM 1-2. If every xe E is represented absolutely and uniquely in some ﬁ’—topology T (),

coarser than 7, by a series >, B, (x) &y, then the topology induced by the semi-norm Y. | By(x) | | |
k=0 k=0

is, for each s, coarser than .
Proof. In the proof of the preceding theorem, replace

|4

_ ©
> By(x) %

k=pn

max
12204

by 3| Bl | |5 [0

and the corresponding topologies 79, 7@, 7 by 79, 7@, 7. We may now prove with little
modification that 7 =7, from which the result follows immediately. In particular,
taking 7@ =

Corollary 1. If E has an absolute base {z,}, then its topology 7, is definable in terms of the semi-

norms Ny(x) = 2|Z (%) |12, s

For N (x) > [ x |, so that 7 is coarser than 7, for all 5, and 7, is consequently coarser than
7,; it is also finer than 7, by the theorem, so that the two are identical.
Corollary 2. With N(x) as in corollary 1, gwen s, there exists o such that N (x) <M |x|,.

Since N(z,) = |z, |;, we have N (x Z | Z,(x) | N,(z,), i.e. the semi-norms can be so chosen
that[x[ ﬂZ[Z %) || 2, |- Wlththlschcnce if | z, |, =0, then
| Z,(%) | = | 2, [T Zo(%) || 2, |, <] 2, [T | %
Hence Z e E¥* and | Z,|,<|z,|7!. But | Z,(z,) | = 1, so that
| Z, 5|2z, |s =1 whenever |z,| 0. (1-3)
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Tueorem 1-3. If E has an absolute base, then every Ee E¥ is of the form E(x) = § a, L,(x),
n=0

where @, € K, o, = 0 if | z,|, = 0, and otherwise {| a, |/| z, |} is bounded; and conversely.
Note. I here refers to the semi-norms N, (x) of the previous theorem.

Proof. If Ee E¥ then E(x) = % Z,(x) &(z,). Write E(z,) = a,. Then |E(x) |<M|x|,
n=0
and in particular |«,|=|Z(z,) | <M |z,|,, Conversely, if |a,|<M]|z,|, define

H(x) = f a, Z.,(%). This converges since
n=0
3 10l 1Z,9 | <M 3| Z,) |12,

Hence | E(x) | <M | x|, and Ee E¥.
An indication of the strength of the hypothesis ‘ E has an absolute base’ is given by:
THEOREM 1-4. If E has an absolute base, then strong and weak sequential convergence are equivalent
in E.
o0
Proof. Let {z,} be the base. Then we can use the semi-norms |x |, = X | Z.(x) ||z, |,-
E=0

For fixed s, consider the mapping

ug x> {Zy(x) [ 2|3
This is linear, maps E into the space [ of absolutely convergent series and | x | = || u,(x) ||
If fe I*, then E(x) = f(u,(x)) e EX¥ C E¥. Suppose {x,} converges weakly to zero in E. Then
by definition f(u(x,)) = Z(x,) =0 as n—oc0. This being true for all fe*, the sequence

{u,(x,)} converges weakly to zero in /. By Banach (1932, p. 137), {u,(x,)} converges strongly
to zeroin/, i.e. || u,(x,) || = | %, |;— 0 as n—o0. This being true for each s, x, — 0 strongly in E.

2. ON #,-SPACES
Suppose we are given a vector space F over the field K and a sequence {F,} of subspaces
of F with the properties: ‘
F=UF, (211)

s=1
F; c Fs+ 1 (2'2)
Fis an Z-space under a topology T, the topology induced on F, by T ) being coarser than T,@. (2-3)

A natural concept of convergence for Fis that in which x, - x is to mean {x, } C F, for some
s and x,—x(7@). A topology J, producing this kind of convergence will be called an
Z,-topology and the space F, endowed with this topology, an %, -space.

As already indicated in the introduction, we are not here concerned with such questions
as to whether such a topology always exists, or with any properties of such a space except
those relevant to the problem in hand.

As examples of Z, -spaces suppose the sequence {F,} stationary, so that F = F_ for some o.
Then for s> ¢, 7@ = J and Fis an #-space under I, = 7@, If, on the other hand, the
sequence {F} is strictly increasing, whilst the topology induced on F, by Z is identical
with [, we can topologize F as an ¥ Z-space. In either case F is an #,-space, the first
trivially, the second by Dieudonné & Schwartz (1950, p. 70).
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Our chief application is to duals of certain #-spaces. Let E be an Z-space with an
absolute base {z,} such that, for each s.

ng()l n ls/l Zy ls+bl <00. (2'4)
By (1-3) this is equivalent to i | 2, |5 | Zy |41 <0 ' (2-5)

In the vector space F = E¥ take F, = E¥; then it is known that (2:1) holds. Moreover,
K being complete, E¥ is a Banach space under the topology Z;* induced by the norm | E |,
and since by (1-2) |E(x) |<|E[, | x|, <|E],| %[+, we see that |E|,,<|E|, for all
E e E¥*; this shows that (2:2) and (2-3) hold.

Let 7, be any topology (compatible, of course, with the algebraic structure, on EZ,
finer than the weak topology butinducing on each E* a topology coarser than 7 *. By theorem

II

1-3, if Z e E¥, the series 2 E(z,) Z, represents E weakly in E¥. But if Ee E¥,
=0

| Ez) [ Zy s <[ B, EIZ s 12, |51<0

S
IMs =

by (25), showing that the series represents B strongly and absolutely in EY, . These representations
are, moreover, unique, since if 3 o, Z, = 0(7,), X @, Z,(z,) = o, = 0 for each n.
k=0 k=0

Now let {E,} be a Cauchy sequence in £. Then {Z,} is a weak Cauchy sequence, hence
weakly bounded, hence equi-continuous (Dieudonné & Schwartz 1950, p. 62, §2and p. 73,
th. 2). This means that for some s, 5 ¢ E¥ for all 7 and {E,} is bounded for 7, *; let M be
a bound for {| E, |,}. Then

IEn_:m|s+l<k§0| n(zk) Zk |lels+1
< (1B (z) [ +] Z(z) D) | Zig |51

?r'
1l
o

o]

<2M 3 |2 | Zy oo by (25).

Since {E,(z;)} is, for each £, a Cauchy sequence in K, and we have uniform convergence in
n and m, we see that {2} is a Cauchy sequence in E}Y, convergent since this space is
complete.

Recall that a base for an Z,-space F will be a set {z,} of pomts of F such that every xe F¥

is represented uniquely in the topology 7, on F by a series Z Z.(x) z,. By the definition

of 7., each such series must converge in some J; @; if thls convergence is absolute, we
shall call {z,} an absolute base for F. With this termlnology we may summarize as follows:
THEOREM 2-1. If the %spaco E has an absolute base {z,} satisfying (2-4), then its dual space
E* can be topologized as an F -space and the orthonormal set {Z.,} forms an absolute base for that space.
We now show that the study of series representatmn in Z, -spaces can be reduced to the
corresponding study in F-spaces.
‘TurorEM 2:2. Let F be an F,-space and {x,} a given sequence of points of F. For any fixed s,
suppose that each x € Fy is represented (not necessarily uniquely) i the topology " by a series of
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the form > o % Thenthereexists 0 (depending on s but not on x) such that each xe Fis so represented
£=0 -

in the topology T (.
Proof. We may assume that no x, is zero. To each ¢ corresponds a subset F® of F,, namely,

the set of all ¥ which are represented in Z@. By the definition of 7, F, = UF(” But

F,, being a complete metric space, is of the second category (Banach 1932, p. 14_, th. 2);
hence for some o, F\ is a set of the second category in F..

Let E be the set of all sequences y = {&,} such that 3 a,x, converges in Z to a point
k=0 ~

xeF, and denote this correspondence between x and y by x = u(y). Under the usual

definitions of algebraic operations E becomes a vector space over K and « a linear mapping

0]

of E into F,. The quantity |y |® = max Z O | is for each ¢ a semi-norm on E, and if

pov 1E=p
y=0 then |y |®=0 for some ¢; let dy(y,,y,) be the metric constructed from these semi-
norms (§1) and let d(x,, x,) be the metric for F,. Then d(y,,y,) = dy(y1, y) +d,(u(y;), u(y,))
is an F-metric for E, and we shall show that E is complete under this metric. Let {y,} be
a Cauchy sequence in E; then {u(y,)} is a Cauchy sequence in F,, and hence converges in
7@ to a point xe F,. Also {y,}is a Cauchy sequence in each topology 7 (induced by |y |®),

. . 14 (L)

so that if y, = {¢}, given ¢>>0, we can find 7y(¢, ¢) such that max | 3 (&” —af™) x,| <e for
WV Lk=p [

n,m=n,. By (1-1), {¢f"} is a Cauchy sequence in K for each &, converging to a,, say. Letting

®
S (o) —a) |

m->00 above, max <¢ for n>n;. This shows in particular that Zockxk
k=p

v k=0
converges in Z“ to a point x', say, and that u(y,) —x'(Z“). But u(y,) >=x(7 ) by (2-3)

and the above, so that x = x". This shows that y = {¢,} € E and that «(y) = x. The above
now means that y,—y(7%) for each ¢ so that d(y,,y) -~ 0, and E is an F-space.

Since, by definition of 4, u is continuous on E, and u(E) = F(is of the second category
in F,, we must have F{ = F, (Banach 1932, p. 38, th. 3). This is what we set out to prove.
Similarly: v '

THEOREM 2:3. Let F be an F,-space and {x,} a given sequence of points of F. For any ﬁxed 5,
suppose that each x € F, is represented absolutely in the topology T, by a series of the form 2 Oy, Ko

Then there exists o (depending on s but not on x) such that each x e F, is so represented in the
topology T,

Proof. In the preceding proof replace ‘represented’ by ° represented absolutely in the
definitions of F{” and E; replace the semi-norms max Zockxk

v lk=p
topologies 7. The proof now needs little further modification.

If we now wish to represent or represent absolutely, an #, -space F'in its #, -topology 7,

bY 2 | o | | %, !(L) giving

by series of the form z . Xy, we have to represent each subspace F, in this manner. We

see from these two theorems that thisis equivalent to representing ¥, in some #-topology 7,(,
i.e. that the problem reduces to that of representing #-spaces in (coarser) % Z-topologies.
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436 W. F. NEWNS ON THE REPRESENTATION OF
Suppose that in theorem 2-2 the expansions are unique; then by theorem 1-1 they may be

written > H, (x) x,, where H,e F¥. In particular, if {z,} is a base for F, Z,e N F*. In the,
k=0

o s=1

special cases of Z, -spaces mentioned above, N F¥ = F* (the dual of F for the topology 7,),

s=1 .
so that the corollary to theorem 1-1 holds for these spaces also; this corollary is true more
generally but we shall not prove this here.

We conclude this section with a property of series on any linear topological space, and
in particular on an # -space.

TueOREM 2+4. Let E be a linear topological space and G a proper vector subspace of E. Suppose

that every xe G is represented (in the topology of E) by a series of the form %(xk x. Then every
k=0
x € E is so represented.

Proof. Given an xe Gtakeanyye( G. Thenx—ye( G,sothaty — ﬁﬂkxkandx—y = %ykxk.
m k=0 k=0

Hence x = (x—y) +y = > (Bp+7k) %

k=0
Similarly we could prove:

THEOREM 2-5. Let G be a proper subspace of the F, -space F and suppose that every xe (G is

represented absolutely in T, by a series of the form 3, a, x,. Then every xe F is so represented.
£=0

3. SPACES OF FUNCTIONS REGULAR IN SIMPLY-CONNECTED DOMAINS

Before passing on to our chief application it is convenient to list some standard notations,

A domain (connected open set) in the complex plane will be denoted by D, its closure by D.
We write D_ for some unspecified compact region contained in D, and D, for some un-
specified domain containing D. A regular closed curve is denoted by C and its interior and
exterior domains by D(C), E(C).

If Cis the circle | z| = R, we shall write D(R) for D(C), and E(R) for E(C). We shall also
write D(co) for the whole plane and D, (0) for some unspecified circle of positive radius.

All our functions are single-valued. By f'is regular in D we shall mean fis a branch of an
analytic function, regular in D. Two different branches of the same analytic function are
regarded as distinct regular functions.

We denote by H(D) the class of functions regular in D, and by H(D) the class of functions
regular in D (i.e. in some D). The class H(R) may be regarded as the class of all power
series with radius of convergence not less than R. In particular (o0) is the class of integral
functions and H(0) the class of functions regular at the origin.

Under the usual definitions of algebraic operations, H(D) becomes a vector space over
the field of complex numbers. A natural concept of convergence for H(D) is that of con-
vergence in D which is uniform in any D_. Let A be an increasing sequence of compact sets,
such that U A, = D. Define the topology Z; by the semi-norms max | f(z) |. Then it is

s=1 z€4s
easily seen that convergence in 7, is the sort we require. The space is complete by Cauchy’s
general principle of convergence and Weierstrass’s double-series theorem. Equally


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ANALYTIC FUNCTIONS BY INFINITE SERIES 437

obviously, convergence in J; is strictly weaker than convergence in 7, so that H(D)
is a non-normable F-space.

We require a base for H(D). In the case of circles, we have the set {z"}, which is known to
be an absolute base for H(R). For H(C), we could use the Faber polynomials of C, which Faber
(1903) has shown to be an absolute base. In the general case, if the boundary of D has only
one point say, we can use the set {(z—z,)™}. (When the point is the point at infinity, this
case, the space of all integral functions, is included in the case of circles.) Finally, for a
general simply-connected domain with more than one boundary point, let w = ¥(z) be
a conformal transformation mapping D on to the unit circle D(1). The set {[ (z)]"} forms an

absolute base, since if f(z) is regular in D we have f(z) = f(¢y "} (w)) = 2 a,w" = E a,[V(z)]"

and the series converges in D, uniformly in any D_. The uniqueness is a consequence of
that of Taylor series.

It follows that H(D) is separable, has an absolute base, and that strong and weak sequential
convergence in H(D) are equivalent.

By theorem 1-3 we see that every linear functional on H(R) continuous in .7 is of the form

O(f) = zcn Ay wheref(z) = %a z" and {|¢,||z"|;'} is bounded. Thus every ®e H*(R)
is of the form O f) = 2 nt w where lim|¢,|Y»<R;i.e. H*(R) can be identified with H(1/R).

n—>o

Further, if we write ¢( ) = zc z""=1, we obtain:
n=0

THEOREM 3-1. Every ® e H*(R) is of the form ®(f) = f S(2) ¢(2) dz, where ¢(z) is regular

in E(r) for some r<R, $(c0) = 0 and C is any circle | z| = p, r<,0<R

THEOREM 8-2. The set (HR) is of the first category in the space H(R).

Proof. If R<p<oo, then H(p) is a set of the first category in the space H(R). For the natural
(inclusion) mapping of the space H(p) onto the subset H(p) of the space H(R) is continuous,
the topology of H(p) being finer than that of H(R). Hence H(p) is either of the first category
or identical with H(R), and the latter alternative is false. Finally, H(R) = UH (R,), where
R, = R+1/n. n

It is instructive to consider the statement of topological theorems when interpreted in

terms of H(D). If f(z) = %anzne H(p), then the corollary to theorem 1-1 shows that the
n=0

Taylor coefficient 4, is a continuous linear functional on H(p ) The inequality expressing
this fact reduces to Cauchy’s inequality. If we denote max | f(z) | by M(r) and the majorant
lz]= :

2 |a, | by 2(r), corollary 2 to theorem 1-2 gives 2%(r )<AM (R) for any R>r (since we

can vary p) and some constant 4 (depending on r and R). This inequality can easily be
obtained by an application of Schwarz and Cauchy’s inequalities (strong form), but the
corresponding inequality for, say, H(C) with Faber polynomials as base, is less obvious.

4. SPACES OF FUNCTIONS REGULAR IN CLOSED GIRCLES

We have seen above that the vector space H(r) can be regarded as the dual of an F-space
(namely, H(1/r)). In accordance with §2, H(r) can be topologized as an %,-space. Here,
convergence in J, means uniform convergence in some D (r). In connexion with representation

Vor. 245. A. ) 54
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by series, this concept has been used in the special case » = 0, and is called representation at
the origin (Whittaker 1949, chap. vi). For r==0, the concept of convergence hitherto con-
sidered has been that of uniform convergence in D(r). We shall later see instances in which
properties of H(R) correspond to properties of H(r) with the topology 7;, whereas H(r),
regarded as a space with the topology of uniform convergence in D(r), generally fails to
have that property. We shall see also that in cases where H(r (r) (with convergence in D(r))
has been proved to have certain properties, the conditions assumed have implied that, in
the case in question, convergence in D(r) and in D () are equivalent. Tt is remarkable that this
idea of representation in closed circles should, in this subject, have received more attention
than the more natural concepts of representation in open circles and at the origin.

If we take, as base for H(1/r), the Taylor base {z"}, we see from § 3 that the biorthogonal
set is again the Taylor base {z"} in H(r). Theorem 2-1 states the well-known fact that every
feH(r) is represented absolutely by its Taylor series in some D, (r). From theorem 2-2
we obtain:

THEOREM 4-1. Let {p,(2)} be any sequence of functions in H(r) such that every fe H(p) (for a
guven p>r) is represented in some D, (r) by a series of the form % ¢r i (2). Then there exists R>r such
k=0
that every such f is so represented in D(R).

5. SPACES OF INTEGRAIL FUNCTIONS

Consider the class I(p, o) of all integral functions of increase not exceeding order p,
type ¢ (0<<p<oo). This class is a vector subspace of the space of all integral functions.

) n/, o
Consider the mapping u(f) = X (:-0) ’ a,z", where f(z) = X a,z". If fe I(p, ), then
n=0 n=0

I 1/
lim (E%) g |a, ll/n] <glip,

n—>oc

so that u(f)e H(s~ V). Hence u is a (1, 1) linear mapping of I(p, o) onto H(c~ V).

Let us now write d,, for the metric of H(¢~Y¢), and define d(f, g) = dy(u(f),u(g)) as a
metric for I(p, o). With this metric /(p, ¢) becomes an Z-space, and u an isomorphism of the
F-spaces I(p, o) and H(o~Yr). Now d( f,, ) — 0 as n—00 is equivalent to | u( f,) —u(f) |,—~0

o K/
asn—>oo forall s;i.e. to 3 | a’ —a, | (ék;) "7t 0 for all < o=, Thus f,— fin the topology
k=0

of I(p, ) implies f, = fin the topology of H(c0). In other words, the topology induced on I(p, 7)
by that of H(c0) is coarser than its F-topology. As in theorem 3-2, we deduce that functions of
finite order form a set of the first category in the space of all integral functions (cf. Iyer
1948, th. 10)

The images of the absolute base {z*} for H(¢s~1) under u, namely, {(n/ep)" z"}, form an
absolute base for I(p, 7). Since these are merely multiples of the functions {z"}, we may take,
for simplicity, the set {z*} as an absolute base. The isomorphism of I(p, s) with H(o~1r)
shows that we could state analogous properties for /(p, o) to those stated above for H(R).
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PART II. A GENERAL THEORY OF BASIC SERIES

6. BASIC SERIES ON %, -SPACES

Let F be an &, -space over the field K and {x,} a sequence of points in /. We are con-
cerned with the possibility of representing each x € F' by a series of the form Z %o con-

vergent in the topology .7, of F. Suppose {z,} is a base for /. Then every x € Iis represented
uniquely by

v=37,5)z (7). (61)
If now every x € F'is to be represented in the form
X = %“kxlm (6'2)
k=0

then, in particular, each z, must be so represented. We therefore make the following
definition:

Aset{p,: k=0,1,2,...} of points of the F -space F is called a basic set if no p, is zero and we
are gwen a double array (11,(z,)) of elements of the field K such that

Y ACTARC AN (#)

We use the term ‘basic set’ to avoid confusion with the term ‘ base’ which we have already
used in its usual meaning. The hypothesis (£) is necessary if there are to be ‘enough’ points
in the set to span the space. Since we are not here concerned with uniqueness, we have no
hypothesis designed to prevent there being ‘ too many’ points in a basic set. It could happen,
for instance, that p, = p, for some i=j; hence the same set {#,} may form more than one
basic set (with different coefficients /7,(z,)). We do, however, assume that there are no
elements zero in a basic set, since this enables us to express our conditions for ‘effectiveness’
(§ 7 below) more neatly.

If {p,} is a basic set, then by (6-1) and (f), we have

r=3Z,(0z-3 3

n=0

nMs

( ) Hk(zn) pka

so that formally, inverting the order of summation,

=3 3 I0(2) Z,(0) p = SIL() b,
where we have written I,(x) = 3 I1,(z,) Z,(x). (6-3)

There is no ambiguity in this notation since {z,} is a base and consequently Z,(z,) = o7.
The formal series o
B(x) Zkgonk(x)f’k (6-4)

is called the basic series of x, and the formal coeflicient I7,(x) a basic coefficient. The series (6-4)
is of the required form (6-2), and there arises the corresponding question: ‘under what
circumstances will every x € F' be represented (in .7;) by its basic series?’

54-2
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If every x in a space E is represented in a topology 7 by its basic series, we shall say that
the basic set is ¢ffective for E in T ; we similarly define absolute ¢ffectiveness.
Given a subspace F, of F with the properties defined in §2, we consider effectiveness for

F,in .. Now we saw in part I that Z e F¥, so that % I1,(z,) Z,€ F*. Moreover, the limit
of a sequence of continuous linear functionals on ;nogf"-space being continuous (Banach
1932, p. 23, th. 4), we obtain:
THuEOREM 6-1. If IT,(x) is defined (i.e. the series (6-3) converges) for all xe F,, then II e F¥.
THEOREM 6-2. If a basic set is effective for F, in T, then it is effective for F, in some T,

Proof. This theorem is the analogue for basic representations of theorem 2-2, and the
proof needs little modification (using theorem 6-1). Thefollowing is an alternative argument:
let @ be a subset of F, such that every xe F\@ is represented in 7, and F(* is of the second
category in F,. Write

B,(x) =

a
Inas

I1(x) py- | (6-5)

Then by theorem 6-1, B, is a continuous linear mapping of F, into F,.T Hence the subspace
F©, being the set of points at which this sequence converges, is Borel measurable (Banach
1932, p. 18, th. 9). Hence F® = F, by Banach (1932, p. 36, th. 1). Similarly, we could
prove: |

THEOREM 6-3. If a basic set is absolutely effective for F, in T, then it is absolutely effective for
F, in some T

Theorems 2-4 and 2-5 also have their analogues:

TureorREM 6-4. Let E be a linear topological space and G a proper linear subspace of E. If a basic
set is effective for C G in the topology T of E, then it is effective for E in I.

TueoreM 6-5. Let G be a proper subspace of the F.,-space F and suppose a basic set is absolutely
effective for C G in 7. Then the basic set is absolutely effective for F in 7.

These follow similarly from the linearity of B. If, in theorem 6-4, we take .7 to be the
topology induced by that of H(R) on E = H(p), and G to be H(p), we have a theorem of
Whittaker (1949, p. 37, T;) ; Whittaker’s proof (p. 15, T) seems to depend on a deep result
(p. 32, T,,), while our proof'is trivial.

7. CONDITIONS FOR EFFECTIVENESS

For the basic series of x to represent x in the topology Z, there are three separate require-
ments:

(i) For each %, the series defining /7, (x) must converge (in the topology of K);
(ii) The basic series B(x) must converge in the topology 7, ;
(iii) The point B(x) so defined must be the point x.

It may be shown by examples (Whittaker 1949, p. 63, E;5; p. 29, E|; p. 64, E,) that any
of these properties may fail, even though those preceding (if any) hold. We shall show,

t If, for some k, préF,, then Il (x) =0 on F© by definition of F; hence II;(x) =0 on F, since F© is
dense in F,.
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however, that if (i) holds for all x € F, then (iii) holds, so that (ii) and (iii) are equivalent
for our purposes.

TrEOREM 7-1. If the series defining B(x) converges () for all x € F then B(x) = x.
Proof. In the notation (6-5), as in the proof of theorem 6-1, B, is a continuous linear map-
ping of F into some F,, so that B is continuous on F,. This being true for each s,

B(x) = B 3Z,(x) ) = 3 Z,() B(z)) = 3 Z,(x) 7, =1,

n=0

since the hypothesis () may be written B(z,) = z,(7,).
The topology Z;@ of F, is the upper bound of the topologies Z;® induced by the semi-

norms | x |¥ defined on F,. Consider the expression

v (O]

211 (%) py 3

k=p

() — max

Y 2%4
This will, of course, be defined only if /7, (x) is defined for all £. Suppose it is defined (and
finite) for all xe F, and all ¢: then since I7, is linear, ¢'(x) is a semi-norm on F, inducing
a topology 7, and these topologies will have an upper bound 7). In this terminology we
give our general condition for effectiveness.

(7-1)

THEOREM 7-2. For the basic set {p,} to be effective for F in T, it is necessary and sufficient that
given s, there exists o such that 1) is defined on F, and is coarser than T;©; or equivalently that for each
s we can find o such that, given 1, there exist M, j such that ¢ (x) <M | x|\ for all xe F,.

Proof. The equivalence of the two conditions is immediate. If{p,} is effective for F in 7,
then by theorem 6-2, given s, {p,} is effective for F, in some @, By theorem 6-1, for each ¢,
g (x) is lower semi-continuous, and the necessity is a consequence of Bourbaki (1948,
chap. 1x, §5, th. 2) since ¢”(x) is a semi-norm. For the sufficiency, given s, let 7@ be a
topology in which F, is represented by the base {z,} (the existence of which was proved in
theorem 2-2). By hypothesis, we can find ¢ such that for each ¢ there exist M, j such that
gP(x)<M| x| for all xeF, and a fortiori for all xeF,. Since | B,(x) |¥<q¥(x), the
sufficiency follows from Bourbaki (1949, chap. x, § 3, prop. 4) by taking ‘E’ to be F, with
topology 7@, and ‘F’ to be F, with its topology 7, ; the set of linear combinations of the
{z,} is, of course, everywhere dense.

In the foregoing argument there is a slight complication owing to the fact that {z,} is
not necessarily a base for F (with its usual topology Z,®). It is this fact that prevents a
complete reduction from Z,-spaces and topologies to Z-spaces and topologies (cf. §2).
From the proof, however, we can state:

Corollary. Let E be an F-space with a base {z,} and T an F-topology on E, coarser than the
topology 7, of E. Then for the basic set {p} to be effective for E in 7@ it is necessary and sufficient
that ¢©)(x) be defined on E for all ¢ and that 7 be coarser than T,; or, equivalently, that for each o
there exist M, s such that ¢ (x) <M | x|, for all x € E.

For a space with an absolute base, the condition simplifies.
THEOREM 7-3. If {z,} is an absolute base for F, then for {p,} to be effective for F in T, it is suffi-

cient (also necessary) that for each s we can find o such that, given v, there exist M, j such that
49 (2) <M| 2,9 for all .
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Proof. Let 7@ be a topology in which F, is represented absolutely by the base {z,} (the
existence of which was proved in theorem 2-3). Then by hypothesis we can find ¢ such that
for each ¢ there exist M, / such that ¢\¥(z,) <M |z, | for all n. Given £, choose ¢ so that
| £ |$==0. Then for any xe F,,

2 | T(z,) Z,(x) |<[] £ 1 2 | Z,(x) |42 (z0) <M 3 | Z,(2) | | 2, [} <00
by definition of ¢. From (6-3) we see that /7, and hence B, is defined on F, and

() <2max | B,(x) ¢ = 2max| 3 Z,(x) B,(2,) ¢
<2 2 | Z,(x) lq(‘)(zk)<2Mz | Z(%) || 2, |P<M'| x|y’ for some M, j,

the last step following from theorem 1-2. We have also:

Corollary 1. Let E be an F-space with an absolute base {z,}. Then for a basic set to be effective for
E in an F-topology T (coarser than 7, it is necessary and sufficient that for each o there exist
M, s such that ¢9(z,) <M |z, |, for all n.

In particular, either from the theorem or from corollary 1,

Corollary 2. For a basic set {p,} on an F-space E with an absolute base {z,} to be ¢ffective for E in
its topology T, it is necessary and sufficient that, given o, there exist M, s such that q,(z,) <M | z,|,
Sor all n.

The hypothesis that {z,} is an absolute base cannot simply be omitted from these results;
for example, the condition of corollary 2 is insufficient for effectiveness in the Hilbert space
of functions regular in D(1) with boundary values in L2.

8. ABSOLUTE EFFECTIVENESS

A basic set has been defined to be absolutely effective for E in .7 if it is effective for £
in 7 and the basic representations converge absolutely. Instead of the expression ¢i(x)
consider

700 = 3 | I,5) || 5|9 (5:)

When this is defined (and finite) for all x € F,, it is a semi-norm on F; producing a topology
7, if this topology is defined for all ¢, we denote the upper-bound topology by 7. We have
analogously:

TuroreM 8-1. For a basic set {p,} to be absolutely effective for Fin 7, it is necessary and sufficient
that for each s there exists o such that 7 be defined and coarser than F;; or equivalently that, given s,
we can find o such that for each ¢ there exist M, j such that g (x) <M | x | for all x € F.

Proof. The equivalence and necessity follow as in theorem 7-2 with the obvious changes.

The sufficiency is immediate.
THEOREM 8-2. If{z,} is an absolute base for F, then for {p,} to be absolutely effective for Fin I

it is sufficient (also necessary) that for each s we can find o such that for each v there exist M, j such that
79 (z,) <M |z, | for all n.
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Proof. Let 7@ be a topology in which every x e F, is represented absolutely by the base
{z,}. By hypothesis we can find ¢ such that for each ¢ there exist M, j such that
79 (z) <Mz, [}
for all n. Hence

SIm 1al9< 3 3IE) 26 | 0le = 5] 2,6 76

n=0
<M 3| Z,(x) ]|z |9 <c0.
n=0

We could also state the analogues of the corollaries to theorems 7-2 and 7-3.

The hypothesis that {z,} is an absolute base is obviously essential here, even in a space
‘which has an absolute base; for otherwise it would imply that every base is an absolute base.

Other kinds of convergence could be considered; for instance, unconditional convergence
would be straightforward.

9. UNIQUENESS OF BASIC REPRESENTATIONS: BASES

Basic representations are not, in general, the only possible representations of the form
(6-2). It is, however, often important to have unique representations (this justifies, for
example, ‘equating coeflicients’) ; we therefore now look for a further restriction on a basic
set which will secure this. Suppose {,} is a basic set, effective for the Z,-space F in its
topology Z,. Then in particular we have

(e}

But on the other hand, we have b= %8,’;[)", (9-2)
n=0

convergent in any topology since it is a finite sum. If the representations are to be unique,
we must have
IL,(py) = 0% (U)

i.e. the sets {{1,} and {#,} must be biorthogonal. A theorem of Iyer (1950, th. 5) indicates
that when (U) holds, the {f,} will be suitably independent. We therefore make the following
definition:

A basic set {p;} satisfying (U) will be called a U-basic set.

Let us denote the matrix (Z,(p;)) by P and the matrix (IT(z,)) by /1. Then if we apply
Z, to the equation (f), we obtain

3 Z(p) Iz) =3, (03
or PIT=1. (9-4)
Referring now to the definition (6-3) of I7,(p,), we see that (U) reads

3 11,2) Z,(0) = & (05
or IIP = I. (9-6)

The condition for a U-basic set is therefore equivalent to the requirement that the matrix
II should be a two-sided inverse of the matrix P. (Note that (9-4) does not imply (9-6),
since infinite matrices are in general non-associative.)


http://rsta.royalsocietypublishing.org/

N

a
A
ma \
A B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N
JA \
o \
A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

444 W. F. NEWNS ON THE REPRESENTATION OF
We now justify our definition.

THEOREM 9-1. Let {p,} be a U-basic set on an F..-space F and suppose that, for some n, IT, is
defined on F. Then if

kgoakpk =X (3: )) %y = Hn(x>‘
Progf. For some s, % o pr, = % (7,@), and I1 e F¥. Hence by (U),
E=0
Hn(x) = kgoakﬂn(pk) = Ol

Corollary. If a U-basic set is effective for F in T, then the representations are unique.
We now show that, conversely, unique representations are necessarily basic.

THEOREM 9-2. If the F-space E has a base {z,} and if every x € E is represented uniquely in an

F-topology T @, coarser than T, by a series of the form 3, oy py, then {p;} is a basic set and the repre-
k=0

sentations are basic. ‘
Proof. By theorem 1-1, a, = 5,(x), where E, ¢ E¥. Defining II;(z,) = E,(z,), the set {#;}

becomes basic and for any x e E, B, (x) = § Z.,(x) By(z,) = II,(x) by definition. Similarly:
n=0

THEOREM 9-3. If the F,-space F has a base {z,} and if every x € F is represented uniquely in 7,
by a series of the form 3 oy py, then {p} is a U-basic set and the representations are bastc.
k=0

The corollary to theorem 9-1 says that if a U-basic set is effective for an #,-space F in 7,
then it is a base for F. Theorem 9-3 may be interpreted to mean that, given two bases on an
&, -space, the formulae relating the co-ordinates relative to the two bases are those obtain-
able, as in the algebraic theory, by straightforward formal calculation. This remark
emphasizes the fact that in order to change the base, and a fortior: in order to discuss basic
series, we must have a base to start with. Now contrary to what happens in the algebraic
theory, it is false in general that every linear topological space has a base. We could, in fact,
have proved theorem 1:1 without the hypothesis that the topology is locally convex, by
using maxd ( i B (%) %, O) instead of max i =, (x) x, ©

1224 k=pe v E=p
exist linear metric spaces on which there are no non-zero continuous linear functionals

(Banach 1932, p. 234; Day 1940). The problem of existence of bases in locally convex
spaces has not, to the author’s knowledge, been solved even for separable Banach spaces
over an Archimedean-valued field. It will therefore perhaps be worth while to characterize
bases in &, _-spaces.

To this end, a lead is given by the condition for effectiveness of a basic set. Let {z,} be
a base for an &, -space F. Then by theorem 2-2 every F, is represented uniquely in some
T@, By theorem 11, Z,e F* and Z,(z,) = 0%; and from the proof of that theorem we have
also that 7 is coarser than Z®, where 7 is the topology defined by the semi-norms

max 2 Z,(x) zk
v (k=p
tains F,.

; while, on the other hand, there

. obviously also the closed linear hull L({z}) of {z,} for Z con-

b
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TureoreM 9-4. Necessary and sufficient conditions for a sequence {x,} of points of an F -space F
to form a base for I are:

(i) given s, we can find t such that L({x,}) for Z;© contains F,,
(ii) there is a sequence {B,}C F¥ for all s, orthonormal to {x,},
(iii) given t, we can find o such that for each ¢ there exist M, j such that

V 2 Bi(x) %y <M| x|,

k=p

max
v

In condition (ii), we mean, of course, that &, is a linear functional on F and that its restric-
tion to F, is continuous in the topology Z;©.
Proof. We have only to prove the sufficiency. Given s, choose ¢ as in (1), then ¢ as in (iii).

Writing S, (x) = z (%) x;, we then have in particular, |S,(x) | <M | x|/ showing that

S, 1s a contlnuous linear mapping of the space F, with topology Z into the space F, with
topology 7. Also {S,} converges, by (ii), on the everywhere dense set of linear combinations
of the x,. By Bourbaki (1949, chap. x, §3, prop. 4), {S,} converges everywhere in F,. Its
limit §' is continuous in 4 and coincides on the everywhere dense set with the identical
automorphism of F;. We conclude that S(x) = x for all xe I, and s is arbitrary.

For absolute bases we cannot hope to relax the conditions as in the case of basic series
(theorem 8-2). The foregoing does, however, emphasize the corresponding inequality
(theorem 1-2, corollary 2), to which attention has already been drawn (§ 3).

Finally, we observe that though the definition (6-3) of basic coefficients depends on the
base {z,} used, the uniqueness theorem shows that if a U-basic set is effective for F in 7,
the set is U-basic with respect to every base for F and the basic coefficients are independent
of the choice of base. Thisis true even if { p,} is not U-basic, since if {z],} is any other base for F,

z,, = §H (z1,) b1 () by the effectiveness, and by theorem 61,
k=0
1,(8) = I 3 Zy() ) = 3 Zue) () = I (o).

10. APPLICATION TO FUNCTIONS REGULAR IN CIRCLES

Consider the # -space H(p) (0<p<o0) or H(R) (0<R<oo0) with its usual topology
(883, 4), and the Taylor base {z}. In accordance with § 6, a basic set on H(p) (or H(R)) is
a set {p;(2)}, regular and not identically zero in D(p) (or D(R)), for which we are given a
matrix (m,,) of coefficients with the property

z" = Igoﬁnkﬁk(z) (10-1)
uniformly convergent in every D_(p) (or in some D (R)).
The basic series of a function f(z) = Ea z* is now the series ZHk f(0) pr(z), where

1T, f(0) = Zdn’ﬂnk, and the problem that of representing each fe H( ) (or H(R)) in the

correspondlng topology by its basic series. We shall abbreviate ‘represents fin the topology
of H(p)’ to ‘represents fin D(p)’ and ‘represents in the topology of H(R)’ to ‘represents in

Vor. 245. A. 55
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D, (R)’. We shall also use ‘represents in D(R)’ to mean ‘represents in the topology induced
by the norm max | f(z) | on H(R)’; the convergence here is, of course, uniform convergence
lz| =R

in D(R). When the representations are basic, we shall say, for example, effective for H(p)
in D(R).

The semi-norms (they are actually norms) in the definition of the topology of H(p) may
be taken as max | f(z) |, where 7 is one of a sequence {r} increasing to p; then ¢,(z,) may be
written =

3 1 04(2) . (10-2)

k=p

E,(r) = max max
wy lzl=r

For {,(2)} to be effective for H(p) in D(r) it is necessary and sufficient (by theorem 7-3,

corollary 1) that there exist M and R<p such that for all n, F,(r) <MR". If we write
c(r) = Hm [F,(r)]™, (103)

we obtain from this x(r) <R < p. Conversely, if k(r) <p, there is an R<p such that F,(r) <R"
for large n. Since F,(r) <co by (10-1),

TurorEM 10-1. For a basic set {p,(2)} (on H(r)) to be effective for H(p) in D(r) it is necessary
and sufficient that «(r) <p.

Similarly, the conditions for effectiveness in other cases may be expressed more con-
cisely in terms of the Cannon function «(r). If we observe that

0

E,(r) >max = 1",
|z

=7

ﬁnkpk(z)
k=0

we have k(r)=r. (10-4)
From this we obtain easily:

TuEOREM 10-2. For a basic set {p,(2)} to be effective for (a) H(p) in D(p), (b) H(R) in D (R)
or (¢) H(R) in D(R), it is necessary and sufficient that (a) (r) < p for all r<p, (b) k(R+) = R,
(¢) k(R) = R, where k(R+) = lim «(p). '

p—>R+

The limit exists since «(R) is monotone increasing. As usual, we can have p =co in (a)

or R=01in (4).
In the case of absolute effectiveness we define, similarly:
My(1) = max | (2 |, (105)
0(7) zkzol o, | Mi(r), (10-6)
A(r) = lim [w,(r)]"" (10-7)

From theorem 8-2 we now readily obtain:

TuEOREM 10-3. For a basic set {y(2)} to be absolutely ¢ffective for (a) H(p) in D(r), (b) H(p)
in D(p), (¢) H(R) in D,(R) or (d) H(R) in D(R), it is necessary and sufficient that (a) A(r) <p,
(0) A(r) <p_for all r<p, (¢) A(R+) = Ror (d) A(R) = R.
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Whittaker (1949) defines a basic set of polynomials to be a basic set {,(z)} such that the
representation (10-1) is a unique finite sum; we shall call such a basic set a W-basic set. With

i(2) = ?szzl (10-8)

the matrix (p,,) is row-finite; Whittaker (1949, p. 40, T5;) has proved:

THEOREM 10+4. For a set {p,(z)} to be W-basic it is necessary and sufficient that the matrix ( py,)
should have a unique row-finite inverse (m,;).

Since the matrices (f,;) and (7,,) are just the transposes P, IT of the matrices P, I of § 9,
we have:

Corollary. Every W-basic set is U-basic.

In order to extend the results on W-basic sets to general functions {p,(z)}, Nassif (see
Whittaker 1949, p. 77) defines what we shall call an N-basic set to be a basic set such that the
representations (10-1) are unique. This definition is felt to be unsatisfactory for two reasons:
the hypothesis of uniqueness is too restrictive, since a W-basic set need not be N-basic,
and, moreover, it has led to no new results. Nassif extends to N-basic sets the conditions for
effectiveness, which are true without the extra hypothesis, but not the counterpart of
theorem 9-1; the question whether this theorem holds for an N-basic set still remains open.
For an example of a W-basic set which is not N-basic see Whittaker (1935, p. 16).

From theorem 9-1, corollary, we obtain:

THEOREM 10-5. If a U-basic set is effective for H(p) in D(p) or for H(R) in D_(R) then the
representations are unique.

This (with theorem 10-4, corollary) includes the known results on W-basic sets (Whittaker
1949, pp. 62-63, T,; and T,,). The corresponding proposition for H(R) in D(R) is false,
even for a W-basic set which is also effective for H(R) in D, (R); this is shown by the
following example:

bo(2) =1, p(2) =z—1, p(z) =n2%"—(n—1)"2z"1 for n>1.
For n>0, we have z* = n? En: b1(2), and a short calculation gives x(R) = R for R>1. The
k=0

set {p;(2)} is therefore effective for H(1) in D, (1) and in D(1), whilst § 1(z) represents
R k=0
zero in D(1).
It can, however, be shown (on the lines of Whittaker 1949, T,;) that the convergence of

2 | My |2 R for all £ is sufficient for effectiveness in D(R) to imply uniqueness.
n=0

Theorems 2-2 and 9-2 enable us to state: «

THEOREM 10-6. If a basic set represents H(p) or H(R) uniquely in D(r), D (r) or D(r), then the
representations are basic.

‘The uniqueness is essential here; the following example is due to Professor Whittaker:

bo(z) =1, pu(2) =zr—z"1for n>0; zt= %/}k(z).
E=0

The set {p;(2)} is therefore W-basic, but is not effective for H(R) in D(R) for any R<1;
in particular, none of the basic coefficients of (1—z)~! converges. However, it is easily
verified that Z (/1 2 ak) b(2z) represents any f(z) = % a,z*e¢ H(R) in D(R) for all A.

n=0 n=0

55-2
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This same example illustrates how a set can be basic with different //-matrices (cf. § 6);
here we can take, for any 4,
{ A (k<n)
nk

=1 (k).

Theorems 10-5 and 10-6 enable us to complete the proof given by Boas (1948, lemma 2),
that if {p,(2)}, {p¥(2)} are two simple sets (i.e. if p,(z), p*(z) are polynomials of degree n)
such that p,(z) = p¥(z) for n>> N, and if {§*(z)} is effective for H(R) in D(R) or for H(R)
in D(R), then {p,(z)} has the same property. For by hypothesis each fe H(R) (or H(R)) is
represented in D(R) (or in D_(R), by Whittaker 1949, T,,) by its basic series for the set
{p¥(2)}, and the representations are unique by theorem 10-5. Hence, as in Boas’s proof,

each such f'is so represented by a unique series %cn p,(z) and theorem 10-6 applies. The
n=0

hypothesis that the sets are simple could be weakened.
It may be thought that a U-basic set consisting of polynomials would necessarily be
W-basic, but this is not the case. The set {p,(z)}, where p,(z) = (2#*}/(n+1)!) —(z*/n!), is

U-basic with z* = — > nlp,(z) in D(00), but it is not W-basic; moreover, it is easy to show
k=n

that k(R) = R for all R, so that it is everywhere effective.
We have seen thatrepresentations can be unique in D, (R) without being unique in D(R) ;

in other words, that a basic set can represent zero in D(R) but in no D, (R). A basic set can
also represent zero in every D(r) (r<<R) without necessarily giving a representation in
D(R). For example, 20, = (n+k-+1)2— (n—k+1) defines a (1, 1) correspondence between

non-negative integers and ordered pairs (7, £) of non-negative integers. Define

@ = (2 (2 i o,

n—+1 n+1 .
n—2 \omo W
pano(z) = (n+lz) ¢
Then § boy(2) = (Z—i—? z)anm, and for any fixed 7 this tends uniformly to zero as m-—o0
k=0

n E—

in any closed region interior to | z | < _—T i.e. if <1, there is an expansion of zero in D(r).

Suppose now that

kgoﬂk pi(2) (ii)
represents zero in D(1). From (i) we find by differentiation
C3)"m it m—a
nt+1) nk>
PR(0) =4 m4m
—(m) m! if m=a,,

0 otherwise.

Hence if we differentiate (ii) m = «,; times, we obtain, on putting z = 0,

n-2)m nt-2m
el ir) s ()t =0
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ie g, ... =P, Hence if, for some m = «,, §,,7+0, the series (ii) cannot converge uni-

_.}_
formly to zero in D( T 2)

B, = 0 for all m and there is no expansion of zero in D(1).
A W-basic set is called C-basic if it satisfies Cannon’s condition

’ lim N¥m = 1, (C)

n—>ow

since on that circle max | p,, (z) | = 2 for all /. It follows that

where N, is the number of non-zero ,, in (10-1). Since
k

we have A(R) = k(R) for a C-basic set and effectiveness implies absolute effectiveness. We
can, however, have A(R) = «(R) for a set which is not C-basic (see e.g. Cannon 1937).

11. TeeE CANNON FUNCTIONS
Having established the connexion between effectiveness or absolute effectiveness and
the corresponding Cannon function «(r) or A(r), it is natural to investigate the properties
of these functions.

THEOREM 11-1.  x(R'%) <[k(R)]} @D [x(R™*2)]#*  (0<afb<1).

For a proof for W-basic sets see Whittaker (1949, p. 37, Tys). See also theorem 11-5
below.

THEOREM 11-2. There ts at most one interval in which k(R) is constant, the left-/zana’ end-point
of which is R = 0. «(R) increases strictly from a certain value onwards.

"This follows from theorem 11-1 as in Whittaker (1949, p. 88, T, and p. 17, T,).

THEOREM 11-3. K(R) has at most one discontinuity in 0<<R<<c0; in fact, /<(R ) <k(R+)
implies k(R+) =

Proof.+ This follows easily from Hardy, Littlewood & Pdlya (1934, §111, p. 91), since
log «(r) is a convex function of log r.

Using (10-4), we find also (ibid. §91, p. 75):

Lemma. If k(R—) = R for two values R,, Ry with 0 <R, <R,<o0, then k(r) = r for R, <r<R,.

THEOREM 11-4. The values of R such that a basic set is effective for H(R) in D(R) make up an
interval a<<R<b or a<R<b, together, possibly, with the single point R = co.

The values of R such that a basic set is effective for H(R) in D, (R) make up a single interval
a<R<b or a<R<b, together, possibly, with the single point R = 0.

The values of R such that a basic set is effective for H(R) in D(R) make up an interval a<R<b or
a<R<b.

In all cases the end-pomts a, b may be 0, oo or equal to each other. Most of the theorem
follows from the lemma, since x(R—) = R is necessary for effectiveness in all three cases.
The rest is obvious.

Examples showing that the various possibilities left open actually can occur will be
found in Whittaker (1949, pp. 12-14). To complete the list, we give the following two
examples, which were also supplied by Professor Whittaker:

Example 1. Du(2) = 221428 L Q231 i — 4f,

pa(2) =z otherwise.
T I owe this remark to the referee; my original proof was direct.
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450 W. F. NEWNS ON THE REPRESENTATION OF
It will be found that R if R<1
C(R) = {J ir k<1,
oo if R>1,
so that the W-basic set is effective in the single open circle D(1) (and at the origin).
Example 2. po(z) = 221 2% 22841 g = 4f,
p,(2) = z* otherwise.
It will now be found that R if R<1
K(R) = {J Torsh
oo if R>1,

so that the W-basic set is here effective in D(1) and in D(1) (and at the origin), but in no
other circle.

The function A(r) has been considered hitherto only for C-basic sets, but the corre-
sponding results hold generally.

TaeOREM 11-5.  A(R!Ue) L[A(R)]1-@® [A(RIFE)]4P  (0<a/b<1).

Proof. With M(R) = irn]ax | f(2) |, we use Hadamard’s three circles theorem in the form
z|=R

MRV <[M(R)]-e» [M(R™))]#  (0<afb<1), ()
and Holder’s inequality in the form
w0 ) Irr- o 1
Saroyr<| Sa| [ S0 (i)
k=0 k=0 k=0

where a, b,>0, r>1 and (1/r)+(1/r') = 1. Applying (i) to the function f(z) = m, px(2),
| Mo, | My (R <[y | M (R0 [,y | M (RYF2)] .
Summing now from k = 0 to o0 and applying (ii) to the right-hand side with
@y = |y | My(R), by = | my | Mi(R'*?), and 1/r =1—(a/b),
0, (R19) <[0,(R)]' =60 [0, (R *?) ] 2%,

and the result follows by taking nth roots and upper limits as n—0c0.
Theorems 11-2, 113 and 11-4 also hold with A(R) for x(R) and ‘absolutely effective’ for
“effective’.

12. ALTERNATIVE CONDITIONS FOR EFFECTIVENESS IN CIRCLES

We have seen in theorem 6-1 that if a basic set {#,(z)} is effective anywhere, then I, is
a continuous linear functional on the space concerned. Using theorem 3-1 we may therefore

write 1
/(0 = 3 [ f2)m(2) dz, (121)
where ( m(z) = %ﬂnkz""‘l, (12-2)

and C'is a circle such that f(z) is regular in D(C) and m,(z) in E(C). (The existence of this
circle is a consequence of the continuity and hence of the existence of /7, f(0) for all fin
some H(p).) We may state:


http://rsta.royalsocietypublishing.org/

A A

JA '\

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
1~

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ANALYTIC FUNCTIONS BY INFINITE SERIES 451

THEOREM 12-1. In order that IT, f(0) shall exist for all fe H(p) or H(p), it is necessary and
sufficient that lim | m,, [V <p or lim | m,, |V < p respectively (cf. Boas 1949, lemma 1, and Iyer

1948, lemma).

This theorem enables us to give an upper bound for the radius of circles in which there
can be an expansion of zero, namely, k(04 ); for it shows (with Whittaker 1949, p. 62,
equation (XI.8)) that /7, f(0) is defined on H(x(0+)) and theorem 9-1 applies.

In particular, (12-1) gives

1
T = o f _my(z) dz, (12-3)

and for'a U-basic set {p,(z)} f pa(2) m(2) dz = 07, (12-4)

2mi
which is equivalent to the condition (U) for a U-basic set. Obviously

| 1,(0) | < Rmas | (2) | max | 7,(2)|, (12:5)

2|=R
which is the analogue of Cauchy’s inequality.

THEOREM 12-2. For any p>«(r),
(w—z)~1 :kgopk(z) m(w), v (12-6)

where the series converges uniformly for ze D(r), we E(p).
'This may be proved by a standard argument (cf. Titchmarsh 1939, pp. 30-31) for the

reversal of the order of summation in the repeated series nzo kg w1, pr(2). Integrating

term by term and using (12-1) we recover the sufficiency of the condition for effectiveness.

TaEOREM 12:3. For {pk(z)} to be effective for H(p) in D(r) it is necessary and sufficient that
(12-6) holds uniformly for ze D(r), we E(R) for some R<p.

The necessity is immediate from theorems 10-1 and 12-2. The sufficiency follows by
integration as indicated above. Similarly:

TueorEM 12-4. For {p,(2)} to be effective for (a) H(R) in D(R), (b) H(R) in D(R), or (c)H (R)
in D, (R), it is necessary and sufficient that (12-6) holds uniformly for (a) ze D(r), weE(rl) Sor all
r<R and some r,(r) <R, (b) ze D(R), we E( ) for all p>R, or (¢) ze D(r), we E(p) for all p>R
and some r(p) > R.

It is interesting to note that for { pk( )} to be effective for H(p) in D(r), (w—z)~! must be
represented by its basic series for some w with |w | <p, i.e. functions not in H(p) must be
represented.

Tueorem 12:5. For {p,(z)} to be absolutely effective for H(p) in D(7) it is necessary and sufficient
that (12-6) holds for ze D(r), we E(R) for some R<p and that % M, (r) max | m(z) | <co.
k=0 |z|=R

The necessity of the extra condition follows by majorizing the series and using theorem
10-3. The sufficiency is immediate from (12-5). We could also state an analogue for
theorem 12-4.
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13. EFFEGTIVENESS IN GENERAL DOMAINS

The general results of §§ 6 to 9 may also be applied to the space H(D) of functions regular
in a simply-connected domain D (§3). Here, too, the conditions for effectiveness may be
expressed more concisely in terms of a Cannon function. In our usual notation, for a basic

set {p,(z)} we have »
WD) = Smapl) (D), (13-1)

and for any compact subset 4 of D we write

F,(d) = maxmax| 3 m,0,(2) |, (13:2)
nv  ze€d |k=p .
k(A) =Tim [F,(4)]"". (133)

For {p,(z)} to be effective for H(D) in D, corollary 2 of theorem 7-3 gives the condition
that given 4 we can find A'C D such that F,(4) <M max|y(z) |* for some M and all n.
zed'

This is equivalent to «(4) <1 for all compact AC D.

On account of the isomorphism between the Z#-spaces H(D) and H(1), their duals are
also isomorphic, and can therefore be identified with H(1). It would be interesting to know
if they are also isomorphic with H(D), but the answer is only obvious when D is bounded
by the regular curve C. In the latter case, the function ¢ conformally maps C on to the unit
circle and a neighbourhood of D(C) on to a neighbourhood of D(1), thus giving the required
isomorphism. It follows easily that for the basic set {$,(z)} to be effective for H(C) in D, (C)
or in D(C) it is necessary and sufficient that

k(C+)=1 or «(C)=1.

The case of absolute effectiveness is exactly similar. The uniqueness theorems apply
directly.

For the case of H(C) we can obtain more detailed results by using the Faber polynomials
of C. Let y map D(1) in the #-plane conformally on to £(C) in the z-plane so that

z=x(?), x(0) =oo. (13-4)
Then y will be regular, save for the pole at the origin, in some neighbourhood of D(1).

We shall denote by ¥, a circle of radius r which lies inside this neighbourhood; its image C,
lies inside or outside C, according as r>1 or r< 1. It was shown by Faber (1903) that

O
= i, 135
X(t) —Zz ngo n(Z) ( )
where P,(z) is a polynomial of degree #; this is the nth Faber polynomial for C. Moreover,
lim max | P,(z) |V" = 1/r. (18-6)

>0 ze D(Cr)

Faber also showed that every fe H(C,) is represented uniquely in D(C,) by the series

VOEDXRACH (as7)
where a, = 2771 f(x(t)) ide (R>7), (18-8)
and hm |a, <. (18-9)

n—>0
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This shows that the Faber polynomials form an absolute base for H(C,) and for H(C,).

The Faber polynomials for the curve C, are easily seen to be the multiples 7"P,(z) of those
for C.

From (13-7) and (13-8), we see in particular that

3 R Puaf0) = (w027, | (13-10)

1 rlde

Where P 2—71'—i . m

() = (13-11)

and we E(C,). Since lim max | P_,_,(w) |[V"<r, we see that the series (13-10) converges

n o e E(C)
uniformly for ze D(C;) and we E(C,). The notation has been chosen by analogy with the
functions z7"~! associated with the Taylor base {z"}. We have, further,

1

5 f RACISWOL I (13-12)

For the left-hand side is

(Qﬂi)-lf -1t (2mi) - fpk(z 2—x(£))1dz

Yr

— (2ni)"! f #-1P(y(t)) dt by Cauchy’s integral,
Yr
— & by (138).
From this it follows that: .
THEOREM 13-1. Every ®e H*(C) is of the form ®(f) = (2mi) ‘lf f(2) ¢(2) dz, where
¢(z) is regular in E(C), ¢(00) =0, and I" is any curve such that f is regular in D(T) and ¢

For by theorem 1-3, ®(f) = Ean ¢,, where f(z) = 3 a,P(z) and lim|¢,|'n<1. Tt is

n=0 n—>c

sufficient to write ¢(z) = z cn  .—1(2) and integrate term by term.

After these prelimmarles it is now easy not only to apply the results of §§7, 8 to H(C)
and (HC) with Faber polynomials as base, but also to extend the results of § 12. We now have

F(z) = kpk(z) (18-13)
and from (13-6) the condition for effectiveness for H(C) in D(C) becomes «(C,) <1 for all
r>1 (where k now refers to the representation (13-13)). The conditions for effectiveness
for (HC) in D, (C) and in D(C) are similarly x(C+) = 1 and «(C) = 1. The latter has also
been obtained by Elnabi (see Whittaker 1949, pp. 77, 78).

From theorem 13-1 we see that /7, f(C) (in Elnabi’s notation) is given by

u[v]s

(€)= (2ni)[ flo)ale)dz, (13-14)
where B(2) = 3 04P, ,(2), (13-15)

Vor. 245. A. 56
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454 W. F. NEWNS ON THE REPRESENTATION OF

and the methods of § 12 will give conditions for the existence of /7, f(C) and for effectiveness
in terms of the convergence of
2 02 By(w) = (w—2)~! (13-16)
in suitable regions.
Using the fact that max | f(2) | = max| f(x(¢)) |, we could also extend to the family

z€Cy tey

(C,) of parallel curves the properties of « given in §11.

I we write 11— (2ni) [ <y s
we have } z" =éoﬂnk B.(2) (18-18)
and for large w, P, (w) = (2ﬂi)—1fy Flw—x())"1de

= (2m) [ #1 3 wy(e)]rde = 3w (2m) | s,
so that, for large w, P, (w) =r§017nk wmL (18-19)

This result relates the function P_,_,(w) to the function m,(w) of § 11. Returning to the case

of H(D), we shall still have z" = E V[V (2)]* and may define, formally,
E=0
¥ p1(2) :n§0¢nkz~n-l.

It would be interesting to know in what neighbourhood of infinity (if any) this function is
regular, and whether any of the properties found for the special cases extend to this more
general case.

14. REPRESENTATION OF INTEGRAL FUNCTIONS

The general results apply also to the space I(p, ¢) of integral functions of increase not ex-
ceeding order p, type ¢ (0<p<<00, 0<<o<©0). For {#,(2)} to be effective for I(p, ¢) in D(R)
it is necessary and sufficient (by theorem 7-3, corollary 1) that there exist M, r<<o~'/# such

that, for all n, F,(R) < M(n/ep)™r 1"; we obtain:
THEOREM 14-1. For a basic set {p,(2)} to be effective for I(p, o) in D(R) it is necessary and
sufficient that lim [ (ep/n) Ve (E,(R))1] < g V.

For effectiveness in D(c0) the condition must hold for all finite R. :

Similarly, for the space I(p, ¢) of integral functions of increase less than order p, type o
(0<p<o0, 0<o<00):

THEOREM 14-2. For a basic set {p,(2)} to be effective for I(p, o) in D(R) it is necessary and suffi-
cient that Tim [ (ep/n) VP (E,(R))U"] < o~ Ve,

For functions of increase less than order p, type 0 we must have

E{E [(ep/n) VP (F,(R))!"] = 0

forall p<p,. Similar results could be stated for D(R) and D (R). The {p,(z)} need be regular
only in the region in which we wish to represent by series. Our results may equivalently
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ANALYTIC FUNCTIONS BY INFINITE SERIES 455

be expressed in terms of order and type of the basic set (Whittaker 1949, chap. x11; Eweida
1950).

The uniqueness theorem (9-1, corollary) does not apply since the topology of H(R),
even for infinite R, is strictly coarser than that of I(p, 7).

PART III. BASIC SETS ASSOCIATED WITH GIVEN SETS

15. DEFINITIONS AND NOTATIONS

In this part of the paper we shall be concerned almost entirely with representation of
regular functions in circles. Since we discuss mainly effectiveness for H(p) in D(p) or for
H(R) in D, (R) or in D(R), we shall now use the usual abbreviations ¢ffective in D(p), D +(R)
or D(R) respectively.

We saw in § 9 that a basic set {#,(z)} determines a matrix (p,,) and a left inverse () ;
conversely, such a pair of matrices formally determines a basic set. Now with any pair of
matrices there are associated in a natural way other pairs of matrices; hence, with any
basic set we can associate other sets, and inquire into the relation between the original set
and those associated with it.

The inverse of a U-basic set is defined to be the set {,(z)}, where

Bl2) = 3 mu, (151)
k=0
z" :kgopnkﬁk(z)' (15-2)
The transpose of a U-basic set is defined to be the set {$,(z)}, where
Ba(2) :kzopknzka (15-3)
2= 3 moB(2). (15:4)
The transposed inverse of any basic set is defined to be the set {},(z)}, where
Pul) = 2 1, (155)
=0
Zh = kgébknﬁk(z)' (15-6)
Given two basic sets {p{’(2)}, {p{?(z)}, we define their product set (in this order) to be the
set {$,(2)}, where »
hl2) = 205172, (15°7)
z" :kgoﬁnkpk(z)> (15-8)
Ty = 3 1P, (159)
i=0

56-2
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All of these sets are, of course, only formally defined, and our first problem is to investigate
their existence; for the inverse, for example, we need to show that f,(z) is in H(p) or H(p)
for some p and all # and that z" is, for each n, represented by (15-2) in some D(R), D (R)
or D(R).

Associated with any of these sets we have certain entities, such as the Cannon functions,
for which we have introduced a standard notation. The set to which the entity refers will
be indicated in the notation on the same system as above, e.g. #(r), 1(R), M w(0), 1Y), 2.

16. THE TRANSPOSED INVERSE
Let {,(2)} be a basic set (on H(r)), effective for H(p) in D, (r). Then if

J@) = Sa,2eHlp), 1f0) = 3 a1,

exists and we saw in § 3 that % m,,2%€ H(1/p). This suggests that we define, more generally,
k=0

the transposed inverse of a basic set {#,} on an %, -space F to be the set {/1,}. Then if {p,} is
effective for F, in 7, {I1,} is a set of points in the dual F¥ of F,. Moreover, {p,} is effective

for F, in some ), so that, for all xe F,, x = 3 II,(x) p, (7). Hence if ¢ F¥,
=0

5(x) = 3 I,(x) ().

Now the restriction of E to F| is continuous in @), so that we may regard F¥ as a subspace
of F¥, and conclude that each E is represented in the weak topology on F¥ by the series
> E(py) I1,. This shows in particular that{/7,} is actually basic on ¥, since Z, = > Z,(p;) I1;,
=) o =0

convergent in the weak topology on F¥. Moreover, since p, = X Z,(p;) z, () and

n=
oo

0
E(py) I, are basic.
0

He F¥, we have E(p,) = EZ,,( bi) B(z,), showing that the series
n=0 k=

Summarizing:

TraEOREM 16-1. If {p,} is effective for F, in T, then ils transposed inverse {I1.} exists and is
effective for some F¥ in the weak topology on F*.
Let us now suppose that {z,} is an absolute base for F, satisfying the condition (2-4),

i.e. that for each i, E |2z, |?| Z, ¢V <oo; suppose also that {p,} is absolutely effective for
n=0

F, in 7. Then each Ee F}is continuous in some Z,); and for some M and ¢ we have
7P(z,) <M | z,|?. Hence

A EOMIE A ATAFIRA RS
k=0 k=0
SEEDIVAPAIATE
=|B[9 37(2) | 2,16+
n=0

<M|E|®S|z,|9]Z, |6+)<oo.
n=0
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ANALYTIC FUNCTIONS BY INFINITE SERIES 457
We have now proved:

THEOREM 16-2. If F, has an absolute base {z,} satisfying (2-4), and if {p,} is absolutely effective
for F,in T, then {I1,} is absolutely effective for F¥ in any F, -topology on F¥.
Returmng now to the case where F = H(r), F, = H(p), we can state immediately:

TrEOREM 16-3. If {p,(2)} is effective or absolutely effective for H(p) in D, (r), then its transposed
inverse exists and is effective or absolutely effective for H(1[r) in D, (1/p).

THEOREM 16:4. Effectiveness of {p,(z)} in D(R) is equivalent to effectiveness of {p,(z)} in
D, (1/R) ; similarly, effectiveness of { ()} in D (R) is equivalent to ¢ffectiveness of {p,(z)}in D(1/R).
Corresponding results hold for absolute effectiveness.

There is no such reciprocity for representation in D(R). For example, the W-basic set
po(z) =1, p,(z) = z—2z" 1 is effective in D(1), whereas this is impossible for its transposed
inverse $,(z) = z/(1 —z), since these functions are not in H(1).

Obviously, a transposed inverse will be U-basic if and only if the original set is U-basic.

The results of this section enable us to give a generalization of the strong form of Cauchy’s
inequality (cf. the inequality (12-5)).

_ First we define the conjugate of a basic set to be the set whose matrices are the complex
conjugates of those of the original set. Itis trivial that every set is equivalent (as regards effective-
ness) fo its conjugate set.

Now let us take, for simplicity, R = 1, and suppose that the U-basic set {#,(z)} is effective
in D(1) and in D(1) (these restrictions could be weakened). Then {§,(z)} is effective in
D, (1), hence so is its conjugate set {g,(z)}. Thus if fe H(1), we have, in D(1),

1&) = Zauu(d) = 3 fo0u(2).
Denoting complex conjugates by an asterisk, we shall show that
S 0 = 5[ 1) a0, (16:)
n=0 M) —g

which is the generalization referred to above. If the matrix (p,;) is unitary, «, = §, and the
equation reduces to

< 1 (7 .
Zlalr=5]" 1/ a0 (162)

The inequality ioc *gmax | f(z) |? reduces in the case of Taylor series to Cauchy’s
inequality.

To prove (16:1), we first observe that on the unit circle y, f,(z*) = p,(1/z) = zm,(2),
so that

0

FH) = SREaE(E) = 3pERY) = ShEema),

1

and o f i’" | fel?) [2dg = % f S@f*(z) 2 dz =n§0an§0ﬁ’,§< %ifypn(Z) m(2) dz

the term-by-term integration being validated by uniform convergence on y.
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17. THE NORMALIZATION CONDITION

Contrary to what happens in the case of the transposed inverse, it is not, in general, true
that effectiveness of two given sets implies effectiveness of their product set; or that effective-
ness of a given U-basic set implies that its inverse is also effective (see, for example, Nassif

1951). We do, however, obtain such results if we place restrictions on the sets involved.
We define

(r) = i [My ()], (171)
#(r) = lim M, ()] (17:2)

These are obviously increasing functions of 7, so that left and right limits exist. We shall
say that {p,(z)} is normalized in D, (r) with constants a, b (or briefly N(a, b) in D (r)) if there are
strictly positive constants a, b such that

p(r+) <br, N (i)
v(p)>ar for p>r. N (ii)

We shall also say that {,(2)} is normalized in D(R) with constants a, b (or briefly N(a,b)
in D(R)), if, for strictly positive a, b,
ur)<bR for r<R, (1)
v(R—)>=aR. » (ii)
The cases 7 = 0, R —=c0 are, as usual, included; a set is normalized at the origin if
#(04) = 0 and v(p) >0 for p>>0, and in D(c0) if »(00) = co and 4(r) is finite for all finite
(the constants have now disappeared).
In what follows we shall suppose that {$,(z)} is a U-basic set, N(a,b) and effective in
D.(r). In the notation of § 12 we have zp,(z) = m,(1/z), so that by theorem 12-2

#R)P(1]p) <1
for p>r and R such that x(R) <p. Also, equation (12-5) gives x(p) ?(1/p) >1, and we find
easily )P —) = 1; (17-3)
and since we may interchange x and v,
v(r+)g(rt1—) =1 (17-4)
We see that N (i) is equivalentto ~ P(r~1—)>1/br, (17-5)
and that N (ii) is equivalent to
A(l/p)<1jar for all p>r. (17-6)

With theorem 164, the last two equations give:

TueoreM 17-1. If a U-basic set is N(a,b) and ¢ffective in D (r) then its transposed inverse is
N(b=1,a") and effective in D(r™1), and conversely.
Given p>r, choose R such that r<R<1/afi(1/p). Then

M(aR)< 3 | m| (aR)*<pr 3 (aR)F 1, (1]p) <oo,
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ANALYTIC FUNCTIONS BY INFINITE SERIES 459
by Cauchy’s inequality, since $,(z) € H(1/r) (by theorem 16-4). This shows that f,(z) € H(ar)
and that iar+)<r. (17-7)

Similarly, if R>r, then bR>u(r+), and we can find p>7 such that x(p) <bR. For such
R, p we have

F(LJBR)< 3 | fue| (bR)7<p7* 3 (BR) M, (p) <o0,
showing that §,(z)e H(1/br) and that
v BE(1/bR)<1[r for R>r. (17-8)

Let us now suppose that a =4 and that R>r is such that §,(z)e H(bR). Then using
Schwarz’s and Cauchy’s inequalities,

3 |1 im | <[ 3 |70t [2 6B ] [ 3] o2 (6B <D, (5R) 21, (1]6R)
o nk km | =< o nk o pkm 1 s, m .

If we now choose p>r so that pi(1/bR) <1, we have
wn(p) <k§01 Mk lmzol pkm l pm<Mn(bR)m§0pmMm(l/bR) <0,

and A(r+) <A(p) <f(bR). This being true for R>r, we have A(r+)<r by (17-7). We have
proved:

THEOREM 17-2. If a U-basic set is N(b,b) and effective in D_(r), then it is absolutely effective
in D_ (7). ,

"This result indicates the strength of our normalization hypothesis. Similarly, for open
circles, we have:

TueoreM 17-8. If a U-basic set is N(b,b) and effective in D(R), then it is absolutely effective
in D(R).
For by theorem 17-1, the hypotheses imply that the transposed inverse is N(6-1,5-1) and

effective in D (1/R), hence absolutely effective there by theorem 17-2. The result now
follows from theorem 16-4.

18. THE INVERSE OF A U-BASIC SET

We again suppose that {#,(z)} is U-basic, N(a,b) and effective in D, (r). Then for any
p>1, we can find R such that 7 <R<1/aji(1/p). Hence, using Schwarz and Cauchy as in the
previous section,

0,(aR) = 3 | b | Mi(aR)< 3 3 | brain | (BR)"<M,(p) 3 (aR)™ N, (1]p) <o,
and the absolute convergence shows that the condition (15-2) for the inverse to be a basic
set holds in D, (ar). Moreover, A(ar+) <A(aR) <u(p) for any p>r, and by N 1), -

. A(ar+) <br. (18-1)
In particular:

THEOREM 18:1. If a U-basic set is N(b,b) and effective in D (r), then its inverse is U-basic and
absolutely effective in D (br). .
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It will be seen from (17-7) and (17-8) that the inverse is also N(6~1,571) in D_ (br). Corre-
spondingly, for open circles:

THEOREM 18-2. If a U-basic set is N(b, b) and effective in D(R), then its inverse is U-basic and
absolutely effective in D(bR).

For the hypotheses show that the transposed inverse {$,(z)} is N(b1,571) and effective
in D, (1/R), so that by the previous theorem {f,(z)} is absolutely effective in D_(1/6R).
Since {f,(z)} is the transposed inverse of {,(z)} the rest follows from theorem 16-4.

19. THE TRANSPOSE OF A U-BASIC SET
TueoreM 19-1. If a U-basic set is N(b,b) and effective in D (), then its transpose is U-basic
and absolutely effective in D(1/br).
For by theorem 18-1, {,(2)} is absolutely effective in D_ (b7), and {f,(z)} is its transposed
inverse. In theorem 18-2, we proved incidentally:

TueoreM 19-2. If a U-basic set is N(b,b) and effective in D(R), then its transpose is U-basic
and absolutely effective in D (1/bR).

20. ProbucT SETS

THEOREM 20-1. If {p?(z)} ts U-basic, N(b, b) and effective in D (), and if {pi (z)} is absolutely
effective in D (br), then their product set {p,(z)} is basic and absolutely e;ﬁctwe in D, (7).

Proof. Choose p> br small enough for M@ (p) <o (cf. (17-7)). Byhypothesis A0(br+) = br,
so that we can find R>r such that A®(bR)<p. By (17-8) we can choose r; such that
A®(1/bR) < 1/r;<1/r. Hence, by the usual use of Schwarz’s and Cauchy’s inequalities,

(1) < Z I mRmR o7 | <MP(p) 2 M{(bR) MIP(1]p) 3 AILR(1/bR),
i,j,k 1=0
which is finite by the choice of 7;, R and p and by theorem 12-5. The absolute convergence
shows that p,(z) e H(r) and that the condition (15-8) for {#,(z)} to be basic holds in D (r).
Moreover, A(r+) <A(r;) <g?(p) for p>br, and the rest follows from (17-7).
THEOREM 20-2. If {p2(2)} is U-basic, N(b, b) and effective in D(R), and if { i (2)} is absolutely
effective in D(bR), then their product set {p,(z)} is basic and absolutely effective in D(R).
Proof. The hypotheses imply that {$?(z)} is U-basic, N(b~1,571) and effective in D, (1/R)
and that {#{0(z)} is absolutely effective in D (1/6R). By the previous theorem, their product
set exists and is absolutely effective in D_ (1/R), and its transposed inverse is the product set

{$:(2)}, since obviously p,(z) = 2 P 2", where p = Zﬁ‘”ﬁ‘”

With the same hypotheses on { []<2) z)}asin theorem 20 1, let us suppose only that {p{"(z)}
is effective in D, (br). Relative to the absolute base { pﬁf)(z)}, the set {p,(z)} will be basic if

po(2)e H(r) and if p2(z) is represented in D, (r) by the series kz mVpe(2); it will follow

a posteriori that {p,(z)} is basic under (15-8), by the remark at the end of § 9.
For {$,(2)} to be effective in D, (r), it is necessary and sufficient, by theorem 73, that

zwmpk( ) | <MMP(p);

given p>r, we can find R>r and M such that Ff (R) = max 1rn]ax
#v  |z|=R
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hence sufficient that «*(r4) <1v®(p) for all p>r. From N (ii), we see that it is sufficient to
prove that «*(r+) <br.
Given p>br, we can find R>r such that #®(R)<p (by N (i)). Hence, using Cauchy’s
inequality,
z[,(z)( ) z AL

F*(R) = maxmax
v lz|=R|j

< Z M®(R)

1224

< 2 MP(R) p~FP(p) <0

From the uniform convergence in # and v and the convergence of Zn“’ i), we see that
=0
{px(2)} is basic, with respect to the base {2 (z)}, on H(r). Moreover,
k*(r+) <c*(R) <k®(p) - kD (br+) = br.

We have proved:

THEOREM 20-3. If the U-basic set {pP(z)} is N(b,b) and effective in D_(r), and if {pP(2)} is
effective in D (br), then their product set is basic and effective in D, (r).

By the same argument as in theorem 20-2, we have also:

- THEOREM 20-4. If the U-basic set {p?(2)} is N(b,b) and effective in D(R), and if {p{L(2)} is
effective in D(bR), then their product set is basic and effective in D(R).
Finally, we observe that if, in any of these theorems, both {${?(z)} and {p?(z)} are

U-basic, then sois their product {,(z)}. Forby§18, p(z) = wz pub?(z), and by theorem 6-1

op = Zl)kz 277(2)77(1) zpklﬂln

21. SPECIAL SETS OF POLYNOMIALS

Let {$.(2)} be W-basic, and denote by D, the degree of the polynomial of highest degree
appearing in the representation

— Smup2).
We find, easily, D,>n and N,<D,+1.
Hence any of the following hypotheses imply that {,(z)} is C-basic:
lim Dl" = 1, (21-1)
D, = O(n), (21-2)
ImD,[n=1, (21-3)
1.(2) is of degree n. (21-4)

Any of these properties imply those preceding. A set satisfying (21-4) is called simple.
For the second hypothesis, we have (Whittaker 1949, T,,):

TreOREM 21-1. If {p,(2)} is such that D, = O(n) and A(0+) <oo, then A(r) is continuous in
0<r<<co. We have, moreover, for 0<<r<R<o0, r°A(R) < R°A(r), where ¢ = lim (D, /n).

Vor. 245. A. 57
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This gives the immediate: _
Corollary. For a set such that D, = O(n) effectiveness in D(R) and in D, (R) are equivalent; also

effectiveness in D(R) implies effectiveness in D(R).
For the third hypothesis, we have (Whittaker 1949, T),):
THEOREM 21-2. If a basic set for which D,/n—1 is effective in D(r), D(r) or in D (1), then it is

effective in D(R), D(R) and in D_(R) for all R>r.
Corollary. If a basic set_for which D,/n—1 (i.e. the transposed inverse of which satisfies

(21-8)) is effective in D(R), D(R) or in D ,(R), then it is effective in D(r), D(r) and D (r) for all
r<R; effectiveness in D(R) implies effectiveness in D(R).

This is a simple consequence of the theorem and of theorem 16-3, and applies in par-
ticular to transposes of simple sets.

For simple sets we have, in addition to the above results, a convenient criterion for
normalization. Suppose

O<a:liinlpnnll/n<li—nllpnnl”n:b<oo’ (21.5)
n—>w .

Then since p,,7,, = 1, by Cauchy’s inequality, -

and aR<v(R) <u(R)<bk(R). Hence, a simple set satisfying (21-5) is N(a,b) in D(R) or in
D, (r) whenever it is effective there, and when a = b, the results of the preceding sections apply.

In particular, a simple set with leading coefficient unity will be N(1,1) whenever it is
effective, so that our results include those of Eweida (Whittaker 1949, T35 and Tjy).
Theorems 20-3 and 181 also include the results of Nassif (1951), where the hypothesis used
for effectiveness at the origin is 0 <<aR<v(R) <u(R)<bR<oo for all R in 0<<R<¢. This
hypothesis is rather strong, so that Nassif’s result does not imply that of Eweida (consider,
for example, Whittaker 1949, p. 21, E,). Our results include also those of Tantaoui (1950).

22. REPRESENTATION IN CLOSED CIRCLES

In the previous sections we have been concerned exclusively with representation in
D, (r)orin D(R). If; in the results of §§ 18 to 20, we impose the extra condition that D, = O(n),

then effectiveness in D, (R) and in D(R) are equivalent (theorem 21-1, corollary), and the
results can be stated in terms of effectiveness in D(R).

These remarks apply in particular to simple sets with leading coefficient unity, so that
our results include also those of Nassif and of Mursi & Makar (Whittaker 1949, T35 and Tj;).
It must be pointed out that the corresponding results for D(R), though true (by the pre-
ceding), do not follow from those for D(R), as stated by Professor Whittaker; for the con-
verse of theorem 21-1, corollary (Whittaker 1949, Tj;) is false.

In our results on effectiveness in D(R), we are, of course, using the hypothesis that the
set is normalized in D, (R), and the question arises as to whether a weaker hypothesis would
suffice for this special case. An attempt in this direction has been made by Nassif (1947),
who uses the hypothesis

0<lim [MP(R)]V" = aR <0, (22-1)

n—>w
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or, in our notation, 0 <#®(R) = v@(R) = aR<oo. His assertions are:
(A) Let {p1(2)} be C-basic and {p?(2)} such that D® = O(n). Suppose also that {p@(z)} is
effective in D(R). Then for the product set { p,(z)} to be effective in D(R) it is necessary and sufficient that

B [y, (R) (M (R) ] = 1,
uhere ValR) = 3| 1| My(R)

(B) Let {pP(2)}, {2 (2)} be as in (A). Suppose also that {p?(z)} satisfies (22-1) and that AN (r)
is continuous at r = aR. Then the product set {p,(z)} will be effective in D(R) if and only if {p(2)}
is effective in D(aR).

We shall show by examples that the assertion (A) is false, the condition being neither
necessary nor sufficient, and one of these examples will also show that the conditions in (B)
are insufficient for the effectiveness of the product set. The rest of (B) and the rest of the
paper, all of which depend for their proof on (A), are accordingly unproved and will
require re-examination.

The fault in Nassif’s proof of ‘necessity” in (A) lies in the assumption that if two sets
{01(2)}, {4:(2)} are both effective in D(R) and if f(z) is represented (basically) in D(R) by
one set, then f(z) will be represented (basically) in D(R) by the other; for an f(z) regular in
D(R) and continuous (but not regular) in D(R), this implication is not obvious a priori,
and turns out to be false in general. In the proof of ‘sufficiency’ there is confusion between
the number D, and the degree of (z).

Example 1. Consider the simple set {#{0(z)}, given by

n
1) = 325 ah =gyt
k=0

It is easy to verify that A0(r) = 1ifr<1, AO(r) = rifr>1. In particular, {pP(z)} is C-basic,
effective in D(1), and such that X\O(r) is continuous at r = 1.
Consider also the set {{?(z)}, given by

z%* ifkis an odd prime,
P2(z) = {z" ifk=2"and mis an odd prime,

z¥  otherwise.

This being simply a rearrangement of the Taylor base, it is everywhere effective; M@(1) = 1
for all £; moreover, since z" = p{?(z) for some k, we have N? =1 and D@ = n for all n.

Hence {${?(z)} is such that DP = O(n), effective in D(1), and satisfies (22°1) at R = 1 with a = 1.
Forming the product set {#,(2)}, we have p (z) = i P2(z). Also, since obviously {p?(z)} is
k=0

its own inverse,
02" ifnis an odd prime,

m2 = {0y ifn=2"and mis an odd prime,
07 otherwise.
57-2
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Hence 7, =l§)ﬂ(2)ﬂ(l) =n2—a2..,, N,=2 and {p,(2)} is C-basic. Also M, (1) =n+1

n

or all z, so that ©
Va(l) = 2 [md| My(1) = M, (1) +M,_,(1 ) =2(n+1).

Hence lim [y, (1)/M®(1)]Y» = 1 so that all the requirements for ‘sufficiency’ in (A) and
(B) are satisfied. However, the product set {#,(z)} is not effective in D(1). For if zis an odd
Prme, 0, (1) F,(1) = | M0 | Myu(1)>2" and  A(1) >2

Example 2. Take {p¥"V(z)} to be the product set {,(z)} of the previous example; take
{p¥@(z)} to be the same inner set {p'?(z)} as in the previous example. Then their product set
{p¥(2)} is the outer set {pV(z)} of the previous example (since {$?(z)} is its own inverse).

We saw above that {p*1(z)} is C-basic, {$#®(z)} effective in D(1) and such that DP = O(n),

and {p¥(z)} effective in D(1). Thus the requirements for ‘necessity’ in (A) are fulfilled,
whilst, if 7 is an odd prime,

VE(1) = 3| 0| MEL) = 3 | my | MP(1) 2| 70| ML) =2

M*®(1) = 1 for all n, and therefore Lim [ (1)/ M*®(1)]'"=2.

Let us write d, for the degree of 4, (z). Then if we write 2 instead of D? in (A) and (B),
Nassif’s proof of sufficiency is then valid and we have the following result:

TuroreM 22-1. Let {$P(2)} be such that d? = O(n) and effective in D(R), where it satisfies
(22-1) 5 let {pP(2)} be C-basic and effective in D, (aR). Then the product set is absolutely effective
in D(R).

The conditions of this theorem do not imply that {$}?(z)} is either normalized or effective
in D (R), so that the theorem is not a corollary of our preceding results. Although the hypo-
thesis d, = O(n) implies that the set is C-basic, it does not imply the corresponding relation
for D, or d, (we have seen above, in example 1, that the hypothesis D, = O(n) does not imply
the corresponding relation for d, or d,). These remarks are illustrated by the following
example.

Example 3. Let ¢(n) denote the number of odd primes less than n. Define {p,(z)} from the
Taylor base {z"} by replacing z* by z*+ 2" whenever 7 is an odd prime, and displacing the
corresponding z?" to the place immediately following. The first few are: 1, z, z?%, 23428,
28, 24, 254232, 232 26, ... Now if n is not of the form 2* where £ is prime, the place of z” in
this list is increased by at most ¢(n). Hence if # is not prime, z* = p,(z), and if z is prime,

— pu(2) —prir(2), where in either case k<n+g@(n). Thus d,<n-+¢(n)+1 and d, jn— 1.
However, for some £<<n-¢(n) with n prime, d, = 2" and D, = 2", so that neither is O(n).

Since M,(1) <2 we have v,(1) <3, and the set satisfies (22-1) for R = 1 and is effective
in D(1); it is easy to see that A(R) = co for R>1 and that the set is not N(1,1)in D (1).

We point out also that the inverse of a C-basic set or the product of two C-basic sets need
not be C-basic.
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23. THE INTEGRATED SET AND THE DERIVED SET

Given a basic set {p,(z)} we have .
2= S 4(2). (25:1)

Integrating, we have

Zn+1 :kgo(n—k 1) m, [Jk(t) dt = 27’ L% (2)

where we have written pf(z f bra(t)dt, mh =nm,_, ., (n>0, k>0). Adjoining the

function p¥(z) = 1, and deﬁnmg mh = 0 if n = 0 or k£ = 0, the set {p§(z)} forms a basic set
called the integrated set associated with {p,(z)}. Itis easy to see that the integrated set is U-basic
if and only if the given set is U-basic.

Suppose the U-basic set {f(2)} is effective in D(R) (or in D (r)); then if f(2) is in H(R)
(or H(r)), so is its derivative f*(z), and so f’(z) is represented in D(R) (or in D, (r)) by its

basic series % IT, f'(0) px(2). Integrating this, we have, in the same region,
k=0
J2) =f0) £§(2) + 2 T, 17(0) £t (2)- (23-2)

This expansion must be unique, since, if it were not, we should obtain, by differentiation,
non-basic representations of f'(z) relative to the effective U-basic set {,(z)}. It follows
(§9) that they are basic and that the integrated set is also effective in D(R) (or D, (r)).

More generally, if any basic set {,(z)} is effective for H(p) or H(p) in D(r), D(r) or D (r),
then for any fin the appropriate class we obtain the representation (23-2) in the appropriate
topology. Itis easy to show by direct calculation that the series (23-2) is the basic series of
S relative to the set {p#(z)}, so that we may state:

THEOREM 23-1. The integrated set is effective whenever the given set is effective.
If we now differentiate (23-1), we obtain

nz"~1 E ot D1 (2).- (23-3)

In particular, § Mo P1(2) = 0, and at least one 7y, #=0. If v is the smallest £ for which this
k=0

is true, we define p¥(z) = p,(2) if n<v, and p}¥(z) = py,,(z) if n>v. Eliminating p,(z) from
the remaining equations of (23-3), we obtain

0
z" :kgoﬂ;fk[)? (Z)a

- _{ﬂnﬂ,k/(n—i—l) if k<,
k= )
" \(ﬂn+l,k+l7TOV——7Tn+l,v7T0,k+l)/(n+1)ﬂOv if k>v.

where

The basic set {}(z)} so defined is called the derived set of the given set. It may be verified that
it is U-basic if and only if the given set is U-basic.

THEOREM 23-2. If a basic set is qﬁctwe Jor H(p) or H(p) in D(R) or in D, (R), then so is its
derived set.
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Given any fin H(p) or H(p), we can represent F(z) = f : f(#) dt by its basic series and
0

differentiate it. It then only remains to show that the series obtained (after eliminating
1,(2)) is basic relative to the derived set.

This argument fails for representation in D(R), since we can conclude, after differentiation,
only that fis represented in D(R). That the corresponding result to theorem 23-2 for D(R)
is false in general has been shown by Mursi & Makar (1948), who give a sufficient condition
for its validity (the condition (21-1) above). Under this condition, the converse of theorem

23-1 also holds.

24. GENERALIZED LAURENT SERIES

The general results of part IT apply not only to spaces of functions regular in simply-
connected domains, but also when the domains are more general, provided that a base is
given for the space. The simplest doubly-connected domain is the annulus

A(ry, 1) ={z:r <| z | <ry}

bounded by two circles. For the space H(4) of functions regular in 4, endowed with the
usual topology of uniform convergence in any interior closed region, we have the Laurent
base {z*:n=0, 4+-1, +2,...}; and the theory could easily be adapted to the usual notation
% Z.,(x) z, instead of X Z,(x) z,.
—c0 n=0

However, Laurent’s theorem not merely proves that the Laurent base is a base for H(4),
but it constructs the Laurent base out of the Taylor base for H(r,). If we take p,(z) = z" we
find that ,(z) = z7»"1, so that the Laurent base is obtained by defining, forn =0, 1,2, ...,

p——n—l(z) = n(z) (24.1)
It is natural to inquire whether this property holds more generally. Let C;, C, be circles
of radii R,, R, with r; <R, <R,<r,. Then if fe H(A) and ze A(R,, R,) we have, formally,

flz) = @m)t [ flw) w—2)"1dw

C:—Cy

— (2mi) [ flw) 3 (2) m(n) dwo- (i) | ) 3 pi ) m(z) dw

— 3 11,f(0) p(2),
where we have written 1T, £(0) = (27ri)‘1fc Sf(w) m(w) dw, (24-2)
11,1 f(0) = (2m) | flu) p(u) du. (24-3)

The series ﬁ 1T, £(0) p,(z) may be called the generalized Laurent series of f.

THEOREM 24-1. In order that every f in H(A) shall be represented in A by its generalized Laurent
series, it is necessary and sufficient that {p,(z)} should be effective in D, (r)) and in D(r,). If
0<r, <1,<00, an equivalent condition is that k(r) = r for r;<r<r,.
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Proof. The equivalence of the two conditions is an immediate consequence of the lemma
in § 11. The sufficiency is a consequence of theorem 12-4, which justifies the formal opera-
tions by which the series were obtained. For the necessity, let fe H(r,); then fe H(A4) and
hence is represented in A4 by its generalized Laurent series. But from (24-3) and Cauchy’s
theorem, I7_,_, f(0) = 0 if k>0, and by equation (12-1) the series reduces to the basic
series of f. Hence each fe H(r,) is represented in 4, and hence (by the maximum modulus
principle) in D(r,), by its basic series, i.e. {$,(2)} is effective in D(r,). Now suppose
g(z)e H(1/r)); then z7lg(z7!) =f(z) is in H(A). Since evidently I7, f(0) = 0 for k>0,
we have

@) = 341 f(0)hi1(2) = 3 ig(0) my(2),
since 7,(z) = z~1p,(z71). Since also p,(z) = z~lm,(z7}),

g(w) = 3 11,(0) hy(w).

This series represents g in A(r;!,77!) and hence in D(1/r,), so that the transposed inverse of
{px(2)} is effective in D(1/r;). By theorem 16-4, {p,(2)} is effective in D (r,).

If the set {(2)} is U-basic, the representations will be unique, since {f,(z)} cannot
represent zero in D(r,) nor can {$,(z)} in D(1/r,). Conversely, unique representations are
necessarily generalized Laurent series. Finally, from theorem 11-4, we obtain:

TuEOREM 24-2. There is an annulus A(a, b) such that {p,(2)} is effective in A and in any interior
annulus but in no other, save possibly annuli with zero inner radius or infinite outer radius.

I wish to express my gratitude to Professor J. M. Whittaker, F.R.S., who introduced me
to the subject and has been a constant source of guidance and encouragement through-
out the course of my investigations.
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